Extensions 1→N→G→Q→1 with N=C22 and Q=C3xDic6

Direct product G=NxQ with N=C22 and Q=C3xDic6
dρLabelID
C2xC6xDic696C2xC6xDic6288,988

Semidirect products G=N:Q with N=C22 and Q=C3xDic6
extensionφ:Q→Aut NdρLabelID
C22:(C3xDic6) = C3xA4:Q8φ: C3xDic6/C12S3 ⊆ Aut C22726C2^2:(C3xDic6)288,896
C22:2(C3xDic6) = A4xDic6φ: C3xDic6/Dic6C3 ⊆ Aut C22726-C2^2:2(C3xDic6)288,918
C22:3(C3xDic6) = C3xDic3.D4φ: C3xDic6/C3xDic3C2 ⊆ Aut C2248C2^2:3(C3xDic6)288,649
C22:4(C3xDic6) = C3xC12.48D4φ: C3xDic6/C3xC12C2 ⊆ Aut C2248C2^2:4(C3xDic6)288,695

Non-split extensions G=N.Q with N=C22 and Q=C3xDic6
extensionφ:Q→Aut NdρLabelID
C22.1(C3xDic6) = C3xC12.53D4φ: C3xDic6/C3xDic3C2 ⊆ Aut C22484C2^2.1(C3xDic6)288,256
C22.2(C3xDic6) = C3xC24.C4φ: C3xDic6/C3xC12C2 ⊆ Aut C22482C2^2.2(C3xDic6)288,253
C22.3(C3xDic6) = C3xC6.C42central extension (φ=1)96C2^2.3(C3xDic6)288,265
C22.4(C3xDic6) = C6xDic3:C4central extension (φ=1)96C2^2.4(C3xDic6)288,694
C22.5(C3xDic6) = C6xC4:Dic3central extension (φ=1)96C2^2.5(C3xDic6)288,696

׿
x
:
Z
F
o
wr
Q
<